mm1313亚洲精品,欧美俄罗斯40老熟妇,欧美日韩在线观看视频在线,亚洲欧美国产激情综合在线

掃碼關(guān)注公眾號(hào)           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
欧美人与动牲交a精品,国产又猛又黄又爽无遮挡,欧美日韩精品系列一区二区
Mouse Anti-beta Amyloid 1-40/Cy3 Conjugated antibody (bs-0106M-Cy3)
訂購(gòu)熱線:400-901-9800
訂購(gòu)郵箱:sales@m.p2b3.cn
訂購(gòu)QQ:  400-901-9800
技術(shù)支持:techsupport@m.p2b3.cn
說(shuō) 明 書: 100ul  
100ul/2980.00元
大包裝/詢價(jià)
產(chǎn)品編號(hào) bs-0106M-Cy3
英文名稱1 Mouse Anti-beta Amyloid 1-40/Cy3 Conjugated antibody
中文名稱 Cy3標(biāo)記的β淀粉樣肽(1-40)抗體
別    名 beta Amyloid(1-40); beta-Amyloid 1-40; beta-Amyloid 1-40; Amyloid 1-40; A4; AAA; ABETA; ABPP; AD1; Alzheimers Disease Amyloid Protein; Amyloid B; Amyloid Beta A4 Protein Precursor; Amyloid Beta; Amyloid of Aging and Alzheimer Disease; APP; APPI; B Amyloid; Beta APP; Cerebral Vascular Amyloid Peptide; CTFgamma; CVAP; PN II; PN2; PreA4; Protease nexin II; A beta; A4_HUMAN.  
規(guī)格價(jià)格 100ul/2980元 購(gòu)買        大包裝/詢價(jià)
說(shuō) 明 書 100ul  
研究領(lǐng)域 細(xì)胞生物  神經(jīng)生物學(xué)  Alzheimer's  
抗體來(lái)源 Mouse
克隆類型 Polyclonal
交叉反應(yīng) (predicted: Human, Mouse, Rat, Chicken, Dog, Pig, Cow, Rabbit, )
產(chǎn)品應(yīng)用 ICC=1:50-200 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 4.4kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide of human beta-Amyloid
亞    型 IgG
純化方法 affinity purified by Protein A
儲(chǔ) 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產(chǎn)品介紹 background:
The cerebral and vascular plaques associated with Alzheimer's disease are mainly composed of Amyloid beta peptides. beta Amyloid is derived from cleavage of the Amyloid precursor protein and varies in length from 39 to 43 amino acids. beta Amyloid [1-40], beta Amyloid [1-42], and beta Amyloid [1-43] peptides result from cleavage of Amyloid precursor protein after residues 40, 42, and 43, respectively. The cleavage takes place by gamma-secretase during the last Amyloid precursor protein processing step. beta Amyloid [1-40], beta Amyloid [1-42], and beta Amyloid [1-43] peptides are major constituents of the plaques and tangles that occur in Alzheimer's disease. beta Amyloid antibodies and peptides have been developed as tools for elucidating the biology of Alzheimer's disease.

Function:
Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity. Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons.
Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity.
Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brai.
The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.
N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).

Subunit:
Binds, via its C-terminus, to the PID domain of several cytoplasmic proteins, including APBB family members, the APBA family, MAPK8IP1, SHC1 and, NUMB and DAB. Binding to DAB1 inhibits its serine phosphorylation (By similarity). Also interacts with GPCR-like protein BPP, FPRL1, APPBP1, IB1, KNS2 (via its TPR domains), APPBP2 (via BaSS) and DDB1. In vitro, it binds MAPT via the MT-binding domains. Associates with microtubules in the presence of ATP and in a kinesin-dependent manner. Interacts, through a C-terminal domain, with GNAO1. Amyloid beta-42 binds CHRNA7 in hippocampal neurons. Beta-amyloid associates with HADH2. Soluble APP binds, via its N-terminal head, to FBLN1. Interacts with CPEB1 and AGER. Interacts with ANKS1B and TNFRSF21. Interacts with ITM2B. Interacts with ITM2C. Interacts with IDE. Can form homodimers; this is promoted by heparin binding.

Subcellular Location:
Membrane; Single-pass type I membrane protein. Membrane, clathrin-coated pit. Note=Cell surface protein that rapidly becomes internalized via clathrin-coated pits. During maturation, the immature APP (N-glycosylated in the endoplasmic reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and sulfated). After alpha-secretase cleavage, soluble APP is released into the extracellular space and the C-terminal is internalized to endosomes and lysosomes. Some APP accumulates in secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface. Gamma-CTF(59) peptide is located to both the cytoplasm and nuclei of neurons. It can be translocated to the nucleus through association with APBB1 (Fe65). Beta-APP42 associates with FRPL1 at the cell surface and the complex is then rapidly internalized. APP sorts to the basolateral surface in epithelial cells. During neuronal differentiation, the Thr-743 phosphorylated form is located mainly in growth cones, moderately in neurites and sparingly in the cell body. Casein kinase phosphorylation can occur either at the cell surface or within a post-Golgi compartment.

Tissue Specificity:
Expressed in all fetal tissues examined with highest levels in brain, kidney, heart and spleen. Weak expression in liver. In adult brain, highest expression found in the frontal lobe of the cortex and in the anterior perisylvian cortex-opercular gyri. Moderate expression in the cerebellar cortex, the posterior perisylvian cortex-opercular gyri and the temporal associated cortex. Weak expression found in the striate, extra-striate and motor cortices. Expressed in cerebrospinal fluid, and plasma. Isoform APP695 is the predominant form in neuronal tissue, isoform APP751 and isoform APP770 are widely expressed in non-neuronal cells. Isoform APP751 is the most abundant form in T-lymphocytes. Appican is expressed in astrocytes.

Post-translational modifications:
Proteolytically processed under normal cellular conditions. Cleavage either by alpha-secretase, beta-secretase or theta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, and the retention of corresponding membrane-anchored C-terminal fragments, C80, C83 and C99. Subsequent processing of C80 and C83 by gamma-secretase yields P3 peptides. This is the major secretory pathway and is non-amyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of C99 releases the amyloid beta proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42), major components of amyloid plaques, and the cytotoxic C-terminal fragments, gamma-CTF(50), gamma-CTF(57) and gamma-CTF(59).
Proteolytically cleaved by caspases during neuronal apoptosis. Cleavage at Asp-739 by either caspase-6, -8 or -9 results in the production of the neurotoxic C31 peptide and the increased production of beta-amyloid peptides.
N- and O-glycosylated. O-linkage of chondroitin sulfate to the L-APP isoforms produces the APP proteoglycan core proteins, the appicans. The chondroitin sulfate chain of appicans contains 4-O-sulfated galactose in the linkage region and chondroitin sulfate E in the repeated disaccharide region.
Phosphorylation in the C-terminal on tyrosine, threonine and serine residues is neuron-specific. Phosphorylation can affect APP processing, neuronal differentiation and interaction with other proteins. Phosphorylated on Thr-743 in neuronal cells by Cdc5 kinase and Mapk10, in dividing cells by Cdc2 kinase in a cell-cycle dependent manner with maximal levels at the G2/M phase and, in vitro, by GSK-3-beta. The Thr-743 phosphorylated form causes a conformational change which reduces binding of Fe65 family members. Phosphorylation on Tyr-757 is required for SHC binding. Phosphorylated in the extracellular domain by casein kinases on both soluble and membrane-bound APP. This phosphorylation is inhibited by heparin.
Extracellular binding and reduction of copper, results in a corresponding oxidation of Cys-144 and Cys-158, and the formation of a disulfide bond. In vitro, the APP-Cu(+) complex in the presence of hydrogen peroxide results in an increased production of beta-amyloid-containing peptides.
Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP).
Beta-amyloid peptides are degraded by IDE.

DISEASE:
Defects in APP are the cause of Alzheimer disease type 1 (AD1) [MIM:104300]. AD1 is a familial early-onset form of Alzheimer disease. It can be associated with cerebral amyloid angiopathy. Alzheimer disease is a neurodegenerative disorder characterized by progressive dementia, loss of cognitive abilities, and deposition of fibrillar amyloid proteins as intraneuronal neurofibrillary tangles, extracellular amyloid plaques and vascular amyloid deposits. The major constituent of these plaques is the neurotoxic amyloid-beta-APP 40-42 peptide (s), derived proteolytically from the transmembrane precursor protein APP by sequential secretase processing. The cytotoxic C-terminal fragments (CTFs) and the caspase-cleaved products such as C31 derived from APP, are also implicated in neuronal death.
Defects in APP are the cause of amyloidosis cerebroarterial Dutch type (AMYLCAD) [MIM:605714]; also known as hereditary cerebral hemorrhage with amyloidosis Dutch type (HCHWAD). AMYLCAD is a hereditary localized amyloidosis due to amyloid-beta A4 peptide(s) deposition in the cerebral vessels. Beta-APP40 is the predominant form of cerebrovascular amyloid. Amyloid is not found outside the nervous system. The principal clinical characteristics are recurrent cerebral and cerebellar hemorrhages, recurrent strokes, cerebral ischemia, cerebral infarction, and progressive mental deterioration. Onset of the disease is in middle age (44 to 60 years). Patients develop cerebral hemorrhage because of the severe cerebral amyloid angiopathy. Parenchymal amyloid deposits are rare and largely in the form of pre-amyloid lesions or diffuse plaque-like structures. They are Congo red negative and lack the dense amyloid cores commonly present in Alzheimer disease.
Defects in APP are the cause of amyloidosis cerebroarterial Italian type (AMYLCAIT) [MIM:605714]. AMYLCAIT is a hereditary localized amyloidosis due to amyloid-beta A4 peptide(s) deposition in the cerebral vessels, resulting in cerebral amyloid angiopathy. Amyloid is not found outside the nervous system. It is a condition very similar to AMYLCAD, but the clinical course is less severe. Patients manifest mild cognitive decline, recurrent strokes, and epilepsy in some cases. There are extensive amyloid deposits in leptomeningeal and cortical vessels and, to a lesser extent, in the neuropil of the cerebral cortex, in the absence of neurofibrillary tangles.
Defects in APP are the cause of amyloidosis cerebroarterial Iowa type (AMYLCAIW) [MIM:605714]. AMYLCAIW is a hereditary amyloidosis due to amyloid-beta A4 peptide(s) deposition. Patients have progressive aphasic dementia, leukoencephalopathy, and occipital calcifications.

Similarity:
Belongs to the APP family.
Contains 1 BPTI/Kunitz inhibitor domain.

Database links:

Entrez Gene: 351 Human

Entrez Gene: 11820 Mouse

Entrez Gene: 54226 Rat

Omim: 104760 Human

SwissProt: P05067 Human

SwissProt: P12023 Mouse

SwissProt: P08592 Rat

Unigene: 434980 Human

Unigene: 277585 Mouse

Unigene: 2104 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.

β-Amyloid 也稱βA4 蛋白,是β-淀粉樣蛋白前體(APP)經(jīng)β和γ分泌酶分解后的產(chǎn)物,有39-43個(gè)氨基酸殘基組成。是淀粉樣蛋白的主要成分。
β-淀粉樣蛋白來(lái)自β-淀粉樣蛋白原,在腦組織的細(xì)胞外呈絲狀蛋白樣沉積 ,是淀粉樣結(jié)節(jié)性神經(jīng)炎病變的主要蛋白成分,在神經(jīng)纖維中也有沉積。在老年性癡呆Alzheimer病中,大腦皮質(zhì)中特征性地出現(xiàn)β-淀粉樣蛋白沉積形成的老年斑。主要用于老年性癡呆癥病人大腦組織噬斑中淀粉樣物質(zhì)的檢測(cè)。必要時(shí)石蠟組織切片用98-100%甲酸處理2-3分鐘。
版權(quán)所有 2004-2026 www.m.p2b3.cn 北京博奧森生物技術(shù)有限公司
通過(guò)國(guó)際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號(hào): 00124Q34771R2M/1100
通過(guò)國(guó)際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號(hào): CQC24QY10047R0M/1100
京ICP備05066980號(hào)-1         京公網(wǎng)安備110107000727號(hào)
国产精品视频二区不卡| 国产精品国语对白在线观看| 国产精品人妻4p一区| 日本成人在线不卡视频| 亚洲人妻御姐中文字幕| 亚洲精品电影一区二区三区| 国产精品综合色国产亚洲欧| 99国产精品一区二区三区| 国产好大对白露脸高潮| 亚洲欧美日韩精品在| 日本色一区二区三区四区五区| 免费人成视频在线观看不卡| 国产精品不卡在线视频| 国产精品日本欧美一区二区三区| 99久久无色码中文字幕人妻| 精品人妻一区二区三区久久夜夜嗨| 色婷婷久久久久久久久久| 国产精品视频二区不卡| 韩漫漫画在线免费看视频| 久久精品国产成人午夜福利| 日本一区二区三区人妻视频| 国产精品日本女优在线观看| 97久久人人超碰国产精品| 国产精品久久久久久久久久一区| 亚洲欧美成在线观看| 久草视频在线视频在线视频在线观看| 国产三级视频在线观看网站| 麻豆理论片在线观看| 日韩码一码二码三码区别| 97国产精品国偷自产在线| 成人网站在线进入爽爽爽| 日本一区二区三区中文字幕八戒视频| 久久精品成人免费国产| 亚洲色无码专区在线观看精品| 99久久无色码中文字幕人妻| 国产精品我不卡尤物| 日本免费一区二区在线观看| 日本一区二区三区影院| 亚洲线日本一区二区三区| 欧美日韩精品一区二区三区激情在线| 日韩的一区二区另类免费|