mm1313亚洲精品,欧美俄罗斯40老熟妇,欧美日韩在线观看视频在线,亚洲欧美国产激情综合在线

掃碼關(guān)注公眾號(hào)           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
日本电色工业株式会社,日本欧美一区二区二区视频免费,调教女同在线观看中文字幕
Rabbit Anti-P38 MAPK/Cy5 Conjugated antibody (bs-0637R-Cy5)
訂購(gòu)熱線:400-901-9800
訂購(gòu)郵箱:sales@m.p2b3.cn
訂購(gòu)QQ:  400-901-9800
技術(shù)支持:techsupport@m.p2b3.cn
說(shuō) 明 書(shū): 100ul  
100ul/2980.00元
大包裝/詢價(jià)
產(chǎn)品編號(hào) bs-0637R-Cy5
英文名稱1 Rabbit Anti-P38 MAPK/Cy5 Conjugated antibody
中文名稱 Cy5標(biāo)記的絲裂原活化蛋白激酶p38α抗體
別    名 CSAID Binding Protein 1; CSAID binding protein; CSAID-binding protein; Csaids binding protein; CSBP 1; CSBP 2; CSBP; CSBP1; CSBP2; CSPB 1; CSPB1; Cytokine suppressive anti inflammatory drug binding protein; Cytokine suppressive anti-inflammatory drug-binding protein; EXIP; MAP kinase 14; MAP kinase MXI2; MAP kinase p38 alpha; MAPK 14; MAPK14; MAX interacting protein 2; MAX-interacting protein 2; Mitogen Activated Protein Kinase 14; Mitogen activated protein kinase p38 alpha; Mitogen-activated protein kinase 14; Mitogen-activated protein kinase p38 alpha; MK14_HUMAN; Mxi 2; Mxi2; p38 ALPHA; p38; p38 MAP kinase; p38 MAPK; p38/MAPK; p38 mitogen activated protein kinase; p38ALPHA; p38alpha Exip; PRKM14; PRKM15; RK; SAPK 2A; SAPK2A; Stress Activated Protein Kinase 2A.  
規(guī)格價(jià)格 100ul/2980元 購(gòu)買        大包裝/詢價(jià)
說(shuō) 明 書(shū) 100ul  
研究領(lǐng)域 腫瘤  免疫學(xué)  信號(hào)轉(zhuǎn)導(dǎo)  細(xì)胞凋亡  轉(zhuǎn)錄調(diào)節(jié)因子  
抗體來(lái)源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng) Human, Mouse, Rat,  (predicted: Dog, Rabbit, )
產(chǎn)品應(yīng)用 Flow-Cyt=1:50-200 ICC=1:50-200 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 41kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human P38MAPK N-terminus
亞    型 IgG
純化方法 affinity purified by Protein A
儲(chǔ) 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產(chǎn)品介紹 background:
The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various environmental stresses and proinflammatory cytokines. The activation requires its phosphorylation by MAP kinase kinases(MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase. The substrates of this kinase include transcription regulator ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress related transcription and cell cycle regulation, as well as in genotoxic stress response. Four alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported.

Function:
Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A. The p38 MAPKs are emerging as important modulators of gene expression by regulating chromatin modifiers and remodelers. The promoters of several genes involved in the inflammatory response, such as IL6, IL8 and IL12B, display a p38 MAPK-dependent enrichment of histone H3 phosphorylation on 'Ser-10' (H3S10ph) in LPS-stimulated myeloid cells. This phosphorylation enhances the accessibility of the cryptic NF-kappa-B-binding sites marking promoters for increased NF-kappa-B recruitment. Phosphorylates CDC25B and CDC25C which is required for binding to 14-3-3 proteins and leads to initiation of a G2 delay after ultraviolet radiation. Phosphorylates TIAR following DNA damage, releasing TIAR from GADD45A mRNA and preventing mRNA degradation. The p38 MAPKs may also have kinase-independent roles, which are thought to be due to the binding to targets in the absence of phosphorylation. Protein O-Glc-N-acylation catalyzed by the OGT is regulated by MAPK14, and, although OGT does not seem to be phosphorylated by MAPK14, their interaction increases upon MAPK14 activation induced by glucose deprivation. This interaction may regulate OGT activity by recruiting it to specific targets such as neurofilament H, stimulating its O-Glc-N-acylation. Required in mid-fetal development for the growth of embryo-derived blood vessels in the labyrinth layer of the placenta. Also plays an essential role in developmental and stress-induced erythropoiesis, through regulation of EPO gene expression. Isoform MXI2 activation is stimulated by mitogens and oxidative stress and only poorly phosphorylates ELK1 and ATF2. Isoform EXIP may play a role in the early onset of apoptosis. Phosphorylates S100A9 at 'Thr-113'.

Subunit:
Binds to a kinase interaction motif within the protein tyrosine phosphatase, PTPRR (By similarity). This interaction retains MAPK14 in the cytoplasm and prevents nuclear accumulation. Interacts with SPAG9 and GADD45A. Interacts with CDC25B, CDC25C, DUSP1, DUSP10, DUSP16, NP60, FAM48A and TAB1. Interacts with casein kinase II subunits CSNK2A1 and CSNK2B.

Subcellular Location:
Cytoplasm. Nucleus.

Tissue Specificity:
Brain, heart, placenta, pancreas and skeletal muscle. Expressed to a lesser extent in lung, liver and kidney.

Post-translational modifications:
Dually phosphorylated on Thr-180 and Tyr-182 by the MAP2Ks MAP2K3/MKK3, MAP2K4/MKK4 and MAP2K6/MKK6 in response to inflammatory citokines, environmental stress or growth factors, which a ctivates the enzyme. Dual phosphorylation can also be mediated by TAB1-mediated autophosphorylation. TCR engagement in T-cells also leads to Tyr-323 phosphorylation by ZAP70. Dephosphorylated and inactivated by DUPS1, DUSP10 and DUSP16.
Acetylated at Lys-53 and Lys-152 by KAT2B and EP300. Acetylation at Lys-53 increases the affinity for ATP and enhances kinase activity. Lys-53 and Lys-152 are deacetylated by HDAC3.
Ubiquitinated. Ubiquitination leads to degradation by the proteasome pathway.

Similarity:
Belongs to the protein kinase superfamily. CMGC Ser/Thr protein kinase family. MAP kinase subfamily.
Contains 1 protein kinase domain.

Database links:

Entrez Gene: 1432 Human

Entrez Gene: 26416 Mouse

Entrez Gene: 81649 Rat

Entrez Gene: 403856 Dog

GenBank: NM_001315 Human

GenBank: NM_139012 Human

GenBank: NM_011951 Mouse

GenBank: NM_031020 Rat

Omim: 600289 Human

SwissProt: O02812 Dog

SwissProt: Q16539 Human

SwissProt: P47811 Mouse

SwissProt: P70618 Rat

Unigene: 485233 Human

Unigene: 311337 Mouse

Unigene: 88085 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權(quán)所有 2004-2026 www.m.p2b3.cn 北京博奧森生物技術(shù)有限公司
通過(guò)國(guó)際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書(shū)編號(hào): 00124Q34771R2M/1100
通過(guò)國(guó)際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書(shū)編號(hào): CQC24QY10047R0M/1100
京ICP備05066980號(hào)-1         京公網(wǎng)安備110107000727號(hào)
国产精品久久久久九九九九不卡| 午夜精品人妻一区二区三区| 日本一区二区三区中文字幕八戒视频| 国产精品美女作爱视频| 91精品无码中文字幕在线| 欧美黄片一区二区免费| 欧美日韩制服丝袜中文字幕| 韩国三级大尺度床戏网站| 国产精品日本一区二区在线看| 国产精品亚洲一区二区三区欲| 国产av剧情亚洲精品| 国产A级三级三级三级视频| 午夜亚洲在在线观看| 久久国产精品久久精品国产四虎| 久久精品国产亚洲高清| 亚洲国产精品国揄产拍| 成人网站在线进入爽爽爽| 欧美日本aⅴ一区二区三区| 日本成人一区二区不卡| 国产又大又长又粗又猛视频| 亚洲精品国产精品系列| 欧美日本aⅴ一区二区三区| 丰满的大乳老师三级在线观看| 国产精品久久久久粉嫩小| 日本一区二区三区人妻视频| 欧美精品在欧美一区二区三区| 亚洲一区二区三区中文字幕一本| 男人的天堂黄色大片| 日韩精品一区二区亚洲v欧美v日韩| 人妻熟女的高跟丝袜艳遇| 蜜臀91精品国产高清在线| 国产日韩欧美老人啪啪| 在线国产精品一区二区三区| 哪里有免费黄色av| 黄色网色网色网色网色网站| 久久久久久99国产精品免费| 国产乱老熟女乱老熟女视频| 97精品国产自产在线观看| 欧美乱码精品一区二区三区卡| 18禁强伦姧人妻又大又久久| 亚洲人妻御姐中文字幕|