mm1313亚洲精品,欧美俄罗斯40老熟妇,欧美日韩在线观看视频在线,亚洲欧美国产激情综合在线

掃碼關(guān)注公眾號(hào)           掃碼咨詢(xún)技術(shù)支持           掃碼咨詢(xún)技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
午夜精品久久久久久8888v综合,欧美一级一区二区三区在线观看,国产欧美日韩综合在线
Rabbit Anti-KRAS/BF594 Conjugated antibody (bs-1033R-BF594)
訂購(gòu)熱線:400-901-9800
訂購(gòu)郵箱:sales@m.p2b3.cn
訂購(gòu)QQ:  400-901-9800
技術(shù)支持:techsupport@m.p2b3.cn
說(shuō) 明 書(shū): 100ul  
100ul/2980.00元
大包裝/詢(xún)價(jià)
產(chǎn)品編號(hào) bs-1033R-BF594
英文名稱(chēng)1 Rabbit Anti-KRAS/BF594 Conjugated antibody
中文名稱(chēng) BF594標(biāo)記的原癌基因K-ras抗體
別    名 C-K-RAS; c-Ki-ras; c-Ki-ras p21; Ha-ras; K-RAS B; K-RAS2A; K-RAS2B; K-RAS4A; KI-RAS; KI-RAS4B; KRAS; KRAS1; KRAS2; MGC7141; NS; NS3; p21; p21B; p21ras; RAS; RAS1; RASH; RASK2.   
規(guī)格價(jià)格 100ul/2980元 購(gòu)買(mǎi)        大包裝/詢(xún)價(jià)
說(shuō) 明 書(shū) 100ul  
研究領(lǐng)域 腫瘤  細(xì)胞生物  免疫學(xué)  信號(hào)轉(zhuǎn)導(dǎo)  細(xì)胞凋亡  細(xì)胞膜受體  轉(zhuǎn)運(yùn)蛋白  
抗體來(lái)源 Rabbit
克隆類(lèi)型 Polyclonal
交叉反應(yīng) Human, Mouse, Rat, 
產(chǎn)品應(yīng)用 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 21kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human K-ras
亞    型 IgG
純化方法 affinity purified by Protein A
儲(chǔ) 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產(chǎn)品介紹 background:
This gene, a Kirsten ras oncogene homolog from the mammalian ras gene family, encodes a protein that is a member of the small GTPase superfamily. A single amino acid substitution is responsible for an activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma. Alternative splicing leads to variants encoding two isoforms that differ in the C-terminal region. [provided by RefSeq]

Ras, a proto-oncogene, is a small G-protein that has 3 primary isoforms (H-Ras, N-Ras, and K-Ras) that differ in there approximately 20 C-terminal amino acids. H-Ras was first discovered as a transforming product the retrovirus Harvey murine virus and K-Ras of Kirten sarcoma virus. Ras is a heavily studied target of both academic and pharmaceutical research because of its implications in various pathways and diseases as well as being mutated in a large number of human cancers. Ras is most notably the activator of the Erk/MAPK kinase pathway as activator of Raf, as well as an activator of PI3 Kinase (PI3K). In its oncogenic, mutated state, Ras is unable to hydrolyze GTP to GDP, thus staying in an active state and activating numerous pathways including the MAPK pathway through its activation of Raf, but also others as well that include PI3 Kinase and RalGDS. One path that the pharmaceutical industry has taken to control Ras and its activity is by finding what some consider its Achilles’ heel. For its activation, Ras must localize to the plasma membrane, but interestingly, it lacks a transmembrane domain. To achieve this, Ras must first undergo a post-translational modification (PTM) known as prenylation or geranylation at its C-terminal CAAX motif. For this to take place, a controlled three step process must occur. The first step in the process is the prenylation or geranylation of the C in the CAAX motif that is initiated by the covalent attachment of farnesyl groups to the cysteine that is catalyzed by the . After this modification, the and heterodimer enzymes farnesyl transferases –aaX of the motif is proteolytically removed via Rce1 (Ras Converting Enzyme 1), a membrane associated endoprotease, by a mechanism that is still not fully understood. Finally, the C-terminal prenylcysteine is now methlylated by ICMT (Isoprenylcysteine Carboxymethyl Transferase). These drugs have yet to pass clinical trials though and there is doubt that they will ever be successful in treating tumors associated with Ras activation.

Function:
Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.

Subunit:
In its GTP-bound form interacts with PLCE1. Interacts with TBC1D10C. Interacts with RGL3. Interacts with HSPD1. Found in a complex with at least BRAF, HRAS1, MAP2K1, MAPK3 and RGS14. Interacts (active GTP-bound form) with RGS14 (via RBD 1 domain). Forms a signaling complex with RASGRP1 and DGKZ. Interacts with RASSF5. Interacts with PDE6D. Interacts with IKZF3. Interacts with GNB2L1.

Subcellular Location:
Cell membrane. Cell membrane; Lipid-anchor; Cytoplasmic side. Golgi apparatus. Golgi apparatus membrane; Lipid-anchor. Isoform 2: Nucleus. Cytoplasm. Cytoplasm, perinuclear region.

Tissue Specificity:
Widely expressed.

DISEASE:
Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development. Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:607785]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:609942]. Noonan syndrome (NS) [MIM:163950] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.
Defects in KRAS are a cause of gastric cancer (GASC) [MIM:613659]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.
Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.
Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:115150]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development.

Similarity:
Belongs to the small GTPase superfamily. Ras family.

Database links:

Entrez Gene: 3845 Human

Entrez Gene: 16653 Mouse

Entrez Gene: 24525 Rat

Omim: 190070 Human

SwissProt: P01116 Human

SwissProt: P32883 Mouse

SwissProt: P08644 Rat

Unigene: 37003 Human

Unigene: 505033 Human

Unigene: 383182 Mouse

Unigene: 24554 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.

K-ras癌變基因的表達(dá)產(chǎn)物Ras蛋白存在于多數(shù)腫瘤之中,目前是腫瘤研究較重要的蛋白之一。
版權(quán)所有 2004-2026 www.m.p2b3.cn 北京博奧森生物技術(shù)有限公司
通過(guò)國(guó)際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書(shū)編號(hào): 00124Q34771R2M/1100
通過(guò)國(guó)際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書(shū)編號(hào): CQC24QY10047R0M/1100
京ICP備05066980號(hào)-1         京公網(wǎng)安備110107000727號(hào)
一级国产一级日韩一级欧美| 亚洲最大国产精品一区| 国产亚洲黄色在线影院| 亚洲欧美日韩亚洲欧美| 日本成人精品在线播放| 日韩精品一区二区三区在线| 中文字幕视频一区人妻| 国产精品v欧美精品v日本精| 久久久久人妻精品明星换脸| 女人之爱女同电影中文字幕| 在线电影日韩一区二区三区| 久久国产无码模特视频| 欧美一级黄片在线播放| 国产激情作爱在线观看| 无码人妻w在线视频影院| 成人亚洲视频在线观看| 亚洲国产成人久久精品不卡| 一区二区日韩av激情| 人人妻人人澡av天堂香蕉| 久草视频在线视频在线视频在线观看| 9久久99久久久免费精品然| 日韩专区精品无码资源首页| 亚洲另类欧美在线中文字幕不卡| 日本韩国亚洲欧美一区二区三区| 日韩在线|中文字幕| 99久久精品国产一区二区三区?| 欧美日本aⅴ一区二区三区| 操久久久久久久久久久久久久久久久| 日韩欧美一区二区在线播放视频| 国产精品一区二区97| 亚洲欧美日韩亚洲欧美| 国产精品一区二区久久hs| 97精品国产综合久久久免费| 亚洲国产精品无码久久久高潮| 91香蕉下载并安装| 国产微拍无码精品一区| 国产无遮挡又污又黄又爽| 国产精品久久久久一区二区三区厕所| 国产三级在线免费播放| 亚洲gv永久无码天堂网| 久久久精品熟女亚洲av麻豆|