mm1313亚洲精品,欧美俄罗斯40老熟妇,欧美日韩在线观看视频在线,亚洲欧美国产激情综合在线

掃碼關(guān)注公眾號           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  關(guān)于我們  聯(lián)系我們
真实国产乱子伦精品视频,国产一区二区在线校花
首頁 > 產(chǎn)品中心 > 標記一抗 > 產(chǎn)品信息
Rabbit Anti-Yellow fever virus envelope glycoprotein E/Gold Conjugated antibody (bs-2041R-Gold)
訂購熱線:400-901-9800
訂購郵箱:sales@m.p2b3.cn
訂購QQ:  400-901-9800
技術(shù)支持:techsupport@m.p2b3.cn
說 明 書: 100ul(10nm  15nm  35nm
100ul/2980.00元
大包裝/詢價
產(chǎn)品編號 bs-2041R-Gold
英文名稱 Rabbit Anti-Yellow fever virus envelope glycoprotein E/Gold Conjugated antibody
中文名稱 膠體金標記的黃熱病毒包膜糖蛋白抗體
別    名 Envelope protein E; Genome polyprotein; polyprotein [Yellow fever virus]; polyprotein YFV; POLG_YEFV1; YFVgp1; YFVgp1 polyprotein precursor [ Yellow fever virus ].  
規(guī)格價格 100ul/2980元 購買        大包裝/詢價
說 明 書 100ul(10nm  15nm  35nm
研究領(lǐng)域 免疫學  細菌及病毒  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng)
產(chǎn)品應(yīng)用 IEM=1:20-200 ICA=1:20-200 ChIP=1:20-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 54/375kDa
性    狀 Lyophilized or Liquid
濃    度 0.4mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from Yellow fever virus envelope glycoprotein E (IIVGRGDSRLTY)
亞    型 IgG
純化方法 affinity purified by Protein A
儲 存 液 0.02M TBS(pH8.2) with 1% BSA, 0.03% Proclin300.
保存條件 Store at 2-8 oC for 3-6 months. Avoid repeated freeze/thaw cycles.
產(chǎn)品介紹 background:
Envelope protein E binding to host cell surface receptor is followed by virus internalization through clathrin-mediated endocytosis. Envelope protein E is subsequently involved in membrane fusion between virion and host late endosomes. Synthesized as a homodimer with prM which acts as a chaperone for envelope protein E. After cleavage of prM, envelope protein E dissociate from small envelope protein M and homodimerizes.

Function:
Capsid protein C self-assembles to form an icosahedral capsid about 30 nm in diameter. The capsid encapsulates the genomic RNA.
prM acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is matured in the last step of virion assembly, presumably to avoid catastrophic activation of the viral fusion peptide induced by the acidic pH of the trans-Golgi network. After cleavage by host furin, the pr peptide is released in the extracellular medium and small envelope protein M and envelope protein E homodimers are dissociated.
Envelope protein E binding to host cell surface receptor is followed by virus internalization through clathrin-mediated endocytosis. Envelope protein E is subsequently involved in membrane fusion between virion and host late endosomes. Synthesized as a homodimer with prM which acts as a chaperone for envelope protein E. After cleavage of prM, envelope protein E dissociate from small envelope protein M and homodimerizes.
Non-structural protein 1 is involved in virus replication and regulation of the innate immune response.
Non-structural protein 2A may be involved viral RNA replication and capsid assembly (Potential).
Non-structural protein 2B is a required cofactor for the serine protease function of NS3.
Serine protease NS3 displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS2B, performs its autocleavage and cleaves the polyprotein at dibasic sites in the cytoplasm: C-prM, NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-2K and NS4B-NS5. NS3 RNA helicase binds RNA and unwinds dsRNA in the 3' to 5' direction (By similarity).
Non-structural protein 4A induces host endoplasmic reticulum membrane rearrangements leading to the formation of virus-induced membranous vesicles hosting the dsRNA and polymerase, functioning as a replication complex. NS4A might also regulate the ATPase activity of the NS3 helicase (By similarity).
Peptide 2k functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter.
Non-structural protein 4B inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway (By similarity).
RNA-directed RNA polymerase NS5 replicates the viral (+) and (-) genome, and performs the capping of genomes in the cytoplasm. NS5 methylates viral RNA cap at guanine N-7 and ribose 2'-O positions. Besides its role in genome replication, also prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signaling pathway

Subunit:
Capsid protein C forms homodimers. prM and envelope protein E form heterodimers in the endoplasmic reticulum and Golgi. In immature particles, there are 60 icosaedrally organized trimeric spikes on the surface. Each spike consists of three heterodimers of envelope protein M precursor (prM) and envelope protein E. NS1 forms homodimers as well as homohexamers when secreted. NS1 may interact with NS4A. NS3 and NS2B form a heterodimer. NS3 is the catalytic subunit, whereas NS2B strongly stimulates the latter, acting as a cofactor. In the absence of the NS2B, NS3 protease is unfolded and inactive. NS3 interacts with unphosphorylated NS5; this interaction stimulates NS5 guanylyltransferase activity.

Subcellular Location:
Capsid protein C: Virion (Potential).
Peptide pr: Secreted.
Small envelope protein M: Virion membrane; Multi-pass membrane protein (Potential). Host endoplasmic reticulum membrane; Multi-pass membrane protein (Potential).
Envelope protein E: Virion membrane; Multi-pass membrane protein (Potential). Host endoplasmic reticulum membrane; Multi-pass membrane protein (Potential).
Non-structural protein 1: Secreted. Host endoplasmic reticulum membrane; Peripheral membrane protein; Lumenal side.
Non-structural protein 2A-alpha: Host endoplasmic reticulum membrane; Multi-pass membrane protein (Potential).
Non-structural protein 2A: Host endoplasmic reticulum membrane; Multi-pass membrane protein (Potential).
Serine protease subunit NS2B: Host endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side.
Serine protease NS3: Host endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side. Note=Remains non-covalently associated to NS3 protease.
Non-structural protein 4A: Host endoplasmic reticulum membrane; Multi-pass membrane protein. Note=Located in RE-associated vesicles hosting the replication complex.
Non-structural protein 4B: Host endoplasmic reticulum membrane; Multi-pass membrane protein.
RNA-directed RNA polymerase NS5: Host endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side. Host nucleus. Note=Located in RE-associated vesicles hosting the replication complex.

Post-translational modifications:
Specific enzymatic cleavages in vivo yield mature proteins. The nascent protein C contains a C-terminal hydrophobic domain that act as a signal sequence for translocation of prM into the lumen of the ER. Mature protein C is cleaved at a site upstream of this hydrophobic domain by NS3. prM is cleaved in post-Golgi vesicles by a host furin, releasing the mature small envelope protein M, and peptide pr. Non-structural protein 2A-alpha, a C-terminally truncated form of non-structural protein 2A, results from partial cleavage by NS3. Specific enzymatic cleavages in vivo yield mature proteins Peptide 2K acts as a signal sequence and is removed from the N-terminus of NS4B by the host signal peptidase in the ER lumen. Signal cleavage at the 2K-4B site requires a prior NS3 protease-mediated cleavage at the 4A-2K site (By similarity).
RNA-directed RNA polymerase NS5 is phosphorylated on serines residues. This phosphorylation may trigger NS5 nuclear localization.
Envelope protein E and non-structural protein 1 are N-glycosylated.

Similarity:
In the N-terminal section; belongs to the class I-like SAM-binding methyltransferase superfamily. mRNA cap 0-1 NS5-type methyltransferase family.
Contains 1 helicase ATP-binding domain.
Contains 1 helicase C-terminal domain.
Contains 1 mRNA cap 0-1 NS5-type MT domain.
Contains 1 peptidase S7 domain.
Contains 1 RdRp catalytic domain.

Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
版權(quán)所有 2004-2026 www.m.p2b3.cn 北京博奧森生物技術(shù)有限公司
通過國際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
色狠狠久久av北条麻妃| 3色w九九久久男人皇宫宕| 伊人久久亚洲婷婷综合久久| 女教师色色天天免费播放| 操逼啊 啊 啊黄色视频| 黄色av手机在线观看| 国产午夜福利片无码视频| 9亚洲导航深夜福利亚洲| 亚洲男性天堂一区二区三区| 国产高清第一区第二区第一页| 极品 操 抽插视频| 欧美综合区自拍亚洲综合| 日韩欧美一区二区三区在线视频| 三级无码日B视频| 狠狠色伊人亚洲综合成人| 强奷很舒服好爽好爽| 美性中文网中文字幕91| 国产一二三四五自产| 亚洲日韩不卡一区二区三区| 欧美精品国产一区二区在线观看| 激情久久久久久久久久久| 精品人妻一区二区三区日产乱码| 久久综合日韩亚洲精品色| 男人天堂av在线免费看| 强伦人妻一区二区三区视频18| 操烂嫩逼内射视频| 国产成人无码AV一区二区三区| 熟妇丰满大阴户熟妇啪啪| 日韩高清精品一区有码在线| 国产精品欧美久久久久久| 欧美日本大白屁股大黑逼操逼视频| 日本免费无码一区二区到五区| 啊灬啊别停灬用力啊男男在线观看| 欧美十八一区二区三区| 久久久久精品无码专区喝奶| 藏经阁91福利私人试看| 黄色亚洲一级大片| 国产精品视频一区二区三区分享| 欧美日韩一区精品一区精品| 中文字幕不卡一区二区免| 亚洲综合一区国产精品|