mm1313亚洲精品,欧美俄罗斯40老熟妇,欧美日韩在线观看视频在线,亚洲欧美国产激情综合在线

掃碼關注公眾號           掃碼咨詢技術支持           掃碼咨詢技術服務
  
客服熱線:400-901-9800  客服QQ:4009019800  技術答疑  技術支持  質量反饋  關于我們  聯(lián)系我們
最新精品国偷自产在线美女,日韩一区二区国产精品,久久夜色精品国产噜噜噜亚洲av
首頁 > 產(chǎn)品中心 > 一抗 > 產(chǎn)品信息
HCV Core protein Rabbit pAb (bs-0221R)  
訂購熱線:400-901-9800
訂購郵箱:sales@m.p2b3.cn
訂購QQ:  400-901-9800
技術支持:techsupport@m.p2b3.cn
50ul/1180.00元
100ul/1980.00元
200ul/2800.00元
大包裝/詢價
產(chǎn)品編號 bs-0221R
英文名稱 HCV Core protein Rabbit pAb
中文名稱 丙肝病毒核心抗原C區(qū)抗體
別    名 Hepatitis C Virus antigen; Hepatitis C Virus Core 1a; Core protein p19; Hepatitis C Virus Core Antigen-C; HCVAg; HCV-Core protein; HCV core antigen; HCV core protein; Hepatitis C Virus core protein; capsid protein; polyprotein precursor; Core protein p21;  
Specific References  (2)     |     bs-0221R has been referenced in 2 publications.
[IF=5.168] Jiao et al. Insulin receptor substrate-4 interacts with ubiquitin-specific protease 18 to activate the Jak/STAT signaling pathway. (2017) Oncotarget. 8:105923-105935  ChIP ;  
[IF=3.17] Niu, Xuemin, et al. "miR‐1273g‐3p modulates activation and apoptosis of hepatic stellate cells by directly targeting PTEN in HCV‐related liver fibrosis." FEBS Letters (2016).  WB ;  Human.  
研究領域 細胞生物  免疫學  細菌及病毒  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應 (predicted: HCV)
產(chǎn)品應用 ELISA=1:5000-10000
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
理論分子量 19/21 kDa
檢測分子量
細胞定位 細胞漿 細胞膜 分泌型蛋白 
性    狀 Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human HCV-Core: 1-50/60 
亞    型 IgG
純化方法 affinity purified by Protein A
緩 沖 液 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.
保存條件 Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles.
注意事項 This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMed PubMed
產(chǎn)品介紹 Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Plays an important role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Mediates apoptotic pathways throught association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptors-induced apoptosis remains controvertial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Secreted core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. May alter lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage.

Function:
Core protein packages viral RNA to form a viral nucleocapsid, and promotes virion budding. Modulates viral translation initiation by interacting with HCV IRES and 40S ribosomal subunit. Also regulates many host cellular functions such as signaling pathways and apoptosis. Prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) and IFN-gamma signaling pathways and by inducing human STAT1 degradation. Thought to play a role in virus-mediated cell transformation leading to hepatocellular carcinomas. Interacts with, and activates STAT3 leading to cellular transformation. May repress the promoter of p53, and sequester CREB3 and SP110 isoform 3/Sp110b in the cytoplasm. Also represses cell cycle negative regulating factor CDKN1A, thereby interrupting an important check point of normal cell cycle regulation. Targets transcription factors involved in the regulation of inflammatory responses and in the immune response: suppresses NK-kappaB activation, and activates AP-1. Could mediate apoptotic pathways through association with TNF-type receptors TNFRSF1A and LTBR, although its effect on death receptor-induced apoptosis remains controversial. Enhances TRAIL mediated apoptosis, suggesting that it might play a role in immune-mediated liver cell injury. Seric core protein is able to bind C1QR1 at the T-cell surface, resulting in down-regulation of T-lymphocytes proliferation. May transactivate human MYC, Rous sarcoma virus LTR, and SV40 promoters. May suppress the human FOS and HIV-1 LTR activity. Alters lipid metabolism by interacting with hepatocellular proteins involved in lipid accumulation and storage. Core protein induces up-regulation of FAS promoter activity, and thereby probably contributes to the increased triglyceride accumulation in hepatocytes (steatosis).

E1 and E2 glycoproteins form a heterodimer that is involved in virus attachment to the host cell, virion internalization through clathrin-dependent endocytosis and fusion with host membrane. E1/E2 heterodimer binds to human LDLR, CD81 and SCARB1/SR-BI receptors, but this binding is not sufficient for infection, some additional liver specific cofactors may be needed. The fusion function may possibly be carried by E1. E2 inhibits human EIF2AK2/PKR activation, preventing the establishment of an antiviral state. E2 is a viral ligand for CD209/DC-SIGN and CLEC4M/DC-SIGNR, which are respectively found on dendritic cells (DCs), and on liver sinusoidal endothelial cells and macrophage-like cells of lymph node sinuses. These interactions allow capture of circulating HCV particles by these cells and subsequent transmission to permissive cells. DCs act as sentinels in various tissues where they entrap pathogens and convey them to local lymphoid tissue or lymph node for establishment of immunity. Capture of circulating HCV particles by these SIGN+ cells may facilitate virus infection of proximal hepatocytes and lymphocyte subpopulations and may be essential for the establishment of persistent infection.

P7 seems to be a heptameric ion channel protein (viroporin) and is inhibited by the antiviral drug amantadine. Also inhibited by long-alkyl-chain iminosugar derivatives. Essential for infectivity.

Protease NS2-3 is a cysteine protease responsible for the autocatalytic cleavage of NS2-NS3. Seems to undergo self-inactivation following maturation.

NS3 displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS4A, is responsible for the cleavages of NS3-NS4A, NS4A-NS4B, NS4B-NS5A and NS5A-NS5B. NS3/NS4A complex also prevents phosphorylation of human IRF3, thus preventing the establishment of dsRNA induced antiviral state. NS3 RNA helicase binds to RNA and unwinds dsRNA in the 3' to 5' direction, and likely RNA stable secondary structure in the template strand. Cleaves and inhibits the host antiviral protein MAVS.

NS4B induces a specific membrane alteration that serves as a scaffold for the virus replication complex. This membrane alteration gives rise to the so-called ER-derived membranous web that contains the replication complex.

NS5A is a component of the replication complex involved in RNA-binding. Its interaction with Human VAPB may target the viral replication complex to vesicles. Down-regulates viral IRES translation initiation. Mediates interferon resistance, presumably by interacting with and inhibiting human EIF2AK2/PKR. Seems to inhibit apoptosis by interacting with BIN1 and FKBP8. The hyperphosphorylated form of NS5A is an inhibitor of viral replication.

NS5B is a RNA-dependent RNA polymerase that plays an essential role in the virus replication.

Subunit:
Core protein is a homomultimer that binds the C-terminal part of E1 and interacts with numerous cellular proteins. Interaction with human STAT1 SH2 domain seems to result in decreased STAT1 phosphorylation, leading to decreased IFN-stimulated gene transcription. In addition to blocking the formation of phosphorylated STAT1, the core protein also promotes ubiquitin-mediated proteasome-dependent degradation of STAT1. Interacts with, and constitutively activates human STAT3. Associates with human LTBR and TNFRSF1A receptors and possibly induces apoptosis. Binds to human SP110 isoform 3/Sp110b, HNRPK, C1QR1, YWHAE, UBE3A/E6AP, DDX3X, APOA2 and RXRA proteins. Interacts with human CREB3 nuclear transcription protein, triggering cell transformation. May interact with human p53. Also binds human cytokeratins KRT8, KRT18, KRT19 and VIM (vimentin). E1 and E2 glycoproteins form a heterodimer that binds to human LDLR, CLDN1, CD81 and SCARB1 receptors. E2 binds and inhibits human EIF2AK2/PKR. Also binds human CD209/DC-SIGN and CLEC4M/DC-SIGNR. p7 forms a homoheptamer in vitro. NS2 forms a homodimer containing a pair of composite active sites at the dimerization interface. NS2 seems to interact with all other non-structural (NS) proteins. NS4A interacts with NS3 serine protease and stabilizes its folding. NS3-NS4A complex is essential for the activation of the latter and allows membrane anchorage of NS3. NS3 interacts with human TANK-binding kinase TBK1 and MAVS. NS4B and NS5A form homodimers and seem to interact with all other non-structural (NS) proteins. NS5A also interacts with human EIF2AK2/PKR, FKBP8, GRB2, BIN1, PIK3R1, SRCAP, VAPB and with most Src-family kinases. NS5B is a homooligomer and interacts with human VAPB, HNRNPA1 and SEPT6.

Subcellular Location:
Core protein p21: Host endoplasmic reticulum membrane; Single-pass membrane protein. Host mitochondrion membrane; Single-pass type I membrane protein. Host lipid droplet. Note=The C-terminal transmembrane domain of core protein p21 contains an ER signal leading the nascent polyprotein to the ER membrane. Only a minor proportion of core protein is present in the nucleus and an unknown proportion is secreted.
Core protein p19: Virion. Host cytoplasm. Host nucleus. Secreted.

Post-translational modifications:
Specific enzymatic cleavages in vivo yield mature proteins. The structural proteins, core, E1, E2 and p7 are produced by proteolytic processing by host signal peptidases. The core protein is synthesized as a 21 kDa precursor which is retained in the ER membrane through the hydrophobic signal peptide. Cleavage by the signal peptidase releases the 19 kDa mature core protein. The other proteins (p7, NS2-3, NS3, NS4A, NS4B, NS5A and NS5B) are cleaved by the viral proteases.
Envelope E1 and E2 glycoproteins are highly N-glycosylated.
Core protein is phosphorylated by host PKC and PKA.
NS5A is phosphorylated in a basal form termed p56. p58 is an hyperphosphorylated form of p56. p56 and p58 coexist in the cell in roughly equivalent amounts. Hyperphosphorylation is dependent on the presence of NS4A. Human AKT1, RPS6KB1/p70S6K, MAP2K1/MEK1, MAP2K6/MKK6 and CSNK1A1/CKI-alpha kinases may be responsible for NS5A phosphorylation.
NS4B is palmitoylated. This modification may play a role in its polymerization or in protein-protein interactions.
The N-terminus of a fraction of NS4B molecules seems to be relocated post-translationally from the cytoplasm to the ER lumen, with a 5th transmembrane segment. The C-terminus of NS2 may be lumenal with a fourth transmembrane segment.
Core protein is ubiquitinated; mediated by UBE3A and leading to core protein subsequent proteasomal degradation.

Similarity:
Belongs to the hepacivirus polyprotein family.
Contains 1 helicase ATP-binding domain.
Contains 1 peptidase C18 domain.
Contains 1 peptidase S29 domain.
Contains 1 RdRp catalytic domain.

Gene ID:
HCV

Database links:

Entrez Gene: 951475 Hepatitis C Virus genotype 1a

SwissProt: P26664 Hepatitis C Virus genotype 1a

SwissProt: P26663 Hepatitis C Virus genotype 1a




版權所有 2004-2026 www.m.p2b3.cn 北京博奧森生物技術有限公司
通過國際質量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
avtt天堂网先锋伦理| 色一情一交一乱一区二区| 91秦先生全集在线观看| 怎么样操女人的逼亚洲Av黄片段| 啊啊啊啊大鸡巴操我视频| 欧美精品性做久久久久久| 亚洲福利左线观看| 新视觉亚洲三区二区一区理伦| 日韩欧美一区二区三区在线视频| 99精品欧美一区二区三区喷胶| 国产精品国产三级国| 精品精品国产一区二区性色av| 精品无码国产一区二区三区麻豆| 伊人久久综合无码成人网| 天堂久久久久久久久久久| 男生用鸡巴操女生的视频| 日韩精品人妻一区二区免费| 无码人妻精品一区二区三区蜜桃| 人妻熟女av一区二区三区| 日韩视频无码日韩视频又2020| 农村胖肥胖女人操逼视频| 午夜色大片在线免费观看| 色一情一交一乱一区二区| 国产成人精品久久久成人| 久久久精品日韩一区二区三区| 被公侵犯中文字幕在线观看| 最是人间烟火色在线播放| 精品久久久久久久人妻换| 日本六十五十熟女一级黄色| 欧美成人精品一区二区免费看| 男人几把操女人嫩穴| 在线精品亚洲观看不卡欧| 久久国产老熟女老女人| 欧美高清在线观看一区二区三区| 日本一区二区三区高潮喷吹| 偷窥国内肥臀老熟女视频| 男人的天堂久久久久久久| 挺进绝色邻居的紧窄小肉| 日本精品高清在线观看| 日本一区二区三区高潮喷吹| 美国大鸡巴操逼视频|